Robust Stability and Contraction Analysis of Nonlinear Systems via Semidefinite Optimization
نویسندگان
چکیده
A wide variety of stability and performance problems for linear and certain classes of nonlinear dynamical systems can be formulated as convex optimization problems involving linear matrix inequalities (LMIs). These formulations can be solved numerically with computationally-efficient interior-point methods. Many of the first LMI-based stability formulations applied to linear systems and the class of nonlinear systems representable as an interconnection of a linear system with bounded uncertainty blocks. Recently, stability and performance analyses of more general nonlinear deterministic systems, namely those with polynomial or rational dynamics, have been converted into an LMI framework using sum of squares (SOS) programming. SOS programming combines elements of computational algebra and convex optimization to provide efficient convex relaxations for various computationally-hard problems. In this thesis we extend the class of systems that can be analyzed with LMI-based methods. We show how to analyze the robust stability properties of uncertain nonlinear systems with polynomial or rational dynamics, as well as a class of systems with external inputs, via contraction analysis and SOS programming. Specifically, we show how contraction analysis, a stability theory for nonlinear dynamical systems in which stability is defined incrementally between two arbitrary trajectories via a contraction metric, provides a useful framework for analyzing the stability of uncertain systems. Then, using SOS programming we develop an algorithmic method to search for contraction metrics for these systems. The search process is made computationally tractable by relaxing matrix definiteness constraints, the feasibility of which indicates the existence of a contraction metric, to SOS constraints on polynomial matrices. We illustrate our results through examples from the literature and show how our contraction-based approach offers advantages when compared with traditional Lyapunov analysis. Thesis Supervisor: Pablo A. Parrilo Title: Associate Professor of Electrical Engineering and Computer Science
منابع مشابه
Stability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay
In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...
متن کاملPassivity-Based Stability Analysis and Robust Practical Stabilization of Nonlinear Affine Systems with Non-vanishing Perturbations
This paper presents some analyses about the robust practical stability of a class of nonlinear affine systems in the presence of non-vanishing perturbations based on the passivity concept. The given analyses confirm the robust passivity property of the perturbed nonlinear systems in a certain region. Moreover, robust control laws are designed to guarantee the practical stability of the perturbe...
متن کاملStability and robustness analysis of nonlinear systems via contraction metrics and SOS programming
A wide variety of stability and performance questions about linear dynamical systems can be reformulated as convex optimization problems involving linear matrix inequalities (LMIs). These techniques have been recently extended to nonlinear systems with polynomial or rational dynamics through the use of sum of squares (SOS) programming. In this paper we further extend the class of systems that c...
متن کاملDefinition of General Operator Space and The s-gap Metric for Measuring Robust Stability of Control Systems with Nonlinear Dynamics
In the recent decades, metrics have been introduced as mathematical tools to determine the robust stability of the closed loop control systems. However, the metrics drawback is their limited applications in the closed loop control systems with nonlinear dynamics. As a solution in the literature, applying the metric theories to the linearized models is suggested. In this paper, we show that usin...
متن کاملDynamical Robust Nonlinear H∞ Filtering for Lipschitz Descriptor Systems with Parametric and Nonlinear Uncertainties
In this paper, a dynamical robust nonlinear H∞ filtering method is proposed for a class of Lipschitz descriptor systems in which the nonlinearities appear in both the state and measured output equations. The system is assumed to have norm-bounded uncertainties in the realization matrices as well as nonlinear uncertainties. We synthesis the H∞ observer through semidefinite programming and strict...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006